Yeast chorismate mutase in the R state: simulations of the active site.

نویسندگان

  • J Ma
  • X Zheng
  • G Schnappauf
  • G Braus
  • M Karplus
  • W N Lipscomb
چکیده

The isomerization of chorismate to prephenate by chorismate mutase in the biosynthetic pathway that forms Tyr and Phe involves C5---O (ether) bond cleavage and C1---C9 bond formation in a Claisen rearrangement. Development of negative charge on the ether oxygen, stabilized by Lys-168 and Glu-246, is inferred from the structure of a complex with a transition state analogue (TSA) and from the pH-rate profile of the enzyme and the E246Q mutant. These studies imply a protonated Glu-246 well above pH 7. Here, several 500-ps molecular dynamics simulations test the stability of enzyme-TSA complexes by using a solvated system with stochastic boundary conditions. The simulated systems are (i) protonated Glu-246 (stable), (ii) deprotonated Glu-246 (unstable), (iii) deprotonated Glu-246 plus one H2O between Glu-246 and the ether oxygen (unstable), (iv) the E246Q mutant (stable), and (v) addition of OH- between protonated Glu-246 and the ether oxygen. In (v), a local conformational change of Lys-168 displaced the OH- into the solvent region, suggesting a possible rate-determining step that precedes the catalytic step. In a 500-ps simulation of the enzyme complexed with the reactant chorismate or the product prephenate, no water molecule remained near the oxygen of the ligand. Calculations using the linearized Poisson-Boltzmann equation show that the effective pKa of Glu-246 is shifted from 5.8 to 8.1 as the negative charge on the ether oxygen of the TSA is changed from -0.56 electron to -0.9 electron. Altogether, these results support retention of a proton on Glu-246 to high pH and the absence of a water molecule in the catalytic steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.

Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in s...

متن کامل

Modulation of the allosteric equilibrium of yeast chorismate mutase by variation of a single amino acid residue.

Chorismate mutase (EC 5.4.99.5) from the yeast Saccharomyces cerevisiae is an allosteric enzyme which can be locked in its active R (relaxed) state by a single threonine-to-isoleucine exchange at position 226. Seven new replacements of residue 226 reveal that this position is able to direct the enzyme's allosteric equilibrium, without interfering with the catalytic constant or the affinity for ...

متن کامل

A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.

Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical ...

متن کامل

The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.

Molecular dynamics studies of the Escherichia coli chorismate mutase (EcCM), containing at the active site chorismate and in turn the transition state (TS), have been performed. The simulations show that TS is not bound any tighter than chorismate. Comparison of average polar interactions show they are virtually identical for interactions of EcCM with chorismate and the TS, whereas hydrophobic ...

متن کامل

1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: novel fold topology revealed.

The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which ...

متن کامل

Separation of inhibition and activation of the allosteric yeast chorismate mutase.

Yeast chorismate mutase (EC 5.4.99.5) shows homotropic activation by the substrate, allosteric activation by tryptophan, and allosteric inhibition by tyrosine. In this study mutants of chorismate mutase have been found that remain sensitive to one allosteric effector (tryptophan) but insensitive to the other (tyrosine). These mutations are located in the catalytic domain: loop 220s (212-226) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 25  شماره 

صفحات  -

تاریخ انتشار 1998